Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 16(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38730587

RESUMEN

Studies have evaluated vitamin D3's therapeutic potential in estrogen-responsive cancers, with conflicting findings. We have shown that the proliferation of breast cancer cells is regulated by 24R,25-dihydroxyvitamin D3 (24R,25(OH)2D3) depending on estrogen receptor alpha 66 (ERα66) expression, suggesting that this could also be the case for estrogen-sensitive laryngeal cancer cells. Accordingly, we examined levels of ERα isoforms in ERα66-positive UM-SCC-12 and ERα66-negative UM-SCC-11A cells and their response to 24R,25(OH)2D3. 24R,25(OH)2D3 stimulated proliferation, increased the expression of metastatic markers, and inhibited apoptosis in UM-SCC-12 cells while having the opposite effect in UM-SCC-11A cells. To evaluate if vitamin metabolites could act via autocrine/paracrine mechanisms, we assessed the expression, protein levels, and activity of vitamin D3 hydroxylases CYP24A1 and CYP27B1. Both cell types expressed both mRNAs; but the levels of the enzymes and their activities were differentially regulated by estrogen. ERα66-negative UM-SCC-11A cells produced more 24,25(OH)2D3 than UM-SCC-12 cells, but comparable levels of 1,25(OH)2D3 when treated with 25(OH)D3 These results suggest that the regulation of vitamin D3 metabolism in laryngeal cancer cells is modulated by ERα66 expression, and support a role for 24R,25(OH)2D3 as an autocrine/paracrine regulator of laryngeal cancer. The local metabolism of 25(OH)D3 should be considered when determining the potential of vitamin D3 in laryngeal cancer.

2.
Biomimetics (Basel) ; 9(4)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38667238

RESUMEN

The osteoblastic differentiation of bone marrow stromal cells (bMSCs), critical to the osseointegration of titanium implants, is enhanced on titanium surfaces with biomimetic topography, and this is further enhanced when the surfaces are hydrophilic. This is a result of changing the surface free energy to change protein adsorption, improving cell attachment and differentiation, and improving bone-to-implant contact in patients. In this study, we examined different methods of plasma treatment, a well-accepted method of increasing hydrophilicity, and evaluated changes in surface properties as well as the response of bMSCs in vitro. Commercially pure Ti and titanium-aluminum-vanadium (Ti6Al4V) disks were sand-blasted and acid-etched to impart microscale and nanoscale roughness, followed by treatment with various post-processing surface modification methods, including ultraviolet light (UV), dielectric barrier discharge (DBD)-generated plasma, and plasma treatment under an argon or oxygen atmosphere. Surface wettability was based on a sessile water drop measurement of contact angle; the elemental composition was analyzed using XPS, and changes in topography were characterized using scanning electron microscopy (SEM) and confocal imaging. The cell response was evaluated using bMSCs; outcome measures included the production of osteogenic markers, paracrine signaling factors, and immunomodulatory cytokines. All plasma treatments were effective in inducing superhydrophilic surfaces. Small but significant increases in surface roughness were observed following UV, DBD and argon plasma treatment. No other modifications to surface topography were noted. However, the relative composition of Ti, O, and C varied with the treatment method. The cell response to these hydrophilic surfaces depended on the plasma treatment method used. DBD plasma treatment significantly enhanced the osteogenic response of the bMSCs. In contrast, the bMSC response to argon plasma-treated surfaces was varied, with an increase in OPG production but a decrease in OCN production. These results indicate that post-packaging methods that increased hydrophilicity as measured by contact angle did not change the surface free energy in the same way, and accordingly, cells responded differently. Wettability and surface chemistry alone are not enough to declare whether an implant has an improved osteogenic effect and do not fully explain how surface free energy affects cell response.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...